PROPERTIES OF FUNCTIONS

SKETCHING RATIONAL FUNCTIONS

A rational function is a function of the form \(\frac{p(x)}{q(x)} \), where \(p(x) \) and \(q(x) \) are polynomials in \(x \).

Consider the graph of the simple rational function \(y = \frac{1}{x} \), \(x \neq 0 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The behaviour of \(y \) for negative values of \(x \) can be investigated similarly.

The graph approaches the x-axis and y-axis but does not actually touch either axis. The x-axis and y-axis are known as asymptotes.

Note that the graph "jumps" suddenly at either side of \(x = 0 \). The graph is said to be discontinuous at \(x = 0 \).
General Notes

(1) Vertical asymptotes always occur when the denominator of the function equals zero.

(2) At either side of a vertical asymptote, $y \to \infty$ or $y \to -\infty$. The behaviour of a graph at either side of a vertical asymptote should always be investigated.

(3) Non-vertical asymptotes occur when $x \to \pm \infty$.

(4) Any points of intersection with the coordinate axes should be investigated.

(5) The coordinates and nature of any stationary points should be found when requested.
Worked Example 1

Sketch the graph of \(y = \frac{1}{(x + 2)(x - 3)} \).
[You need not find the coordinates of any stationary points.]

Solution

\(y \)-axis:
When \(x = 0 \), \(y = \frac{1}{(2)(-3)} = -\frac{1}{6} \).
The curve cuts the \(y \)-axis at \(\left(0, -\frac{1}{6} \right) \).

\(x \)-axis:
When \(y = 0 \), \(\frac{1}{(x + 2)(x - 3)} = 0 \) \(\Rightarrow \ 1 = 0 \) ???
This means that the curve does not cut the \(x \)-axis.

Vertical Asymptotes: \((x + 2)(x - 3) = 0 \) \(\Rightarrow \ x = -2 \) or \(x = 3 \)

The behaviour of the curve at either side of these vertical asymptotes must be investigated. We know that \(y \to \infty \) or \(y \to -\infty \) before or after a vertical asymptote. The simplest way to investigate the behaviour is to calculate \(y \) for a value of \(x \) just before a vertical asymptote and for a value of \(y \) just after the vertical asymptote. If the calculated value of \(y \) is positive, it means that \(y \to \infty \) and if the value of \(y \) is negative, it means that \(y \to -\infty \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2.1</th>
<th>-2</th>
<th>-1.9</th>
<th>2.9</th>
<th>3</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>+\infty</td>
<td>-\infty</td>
<td>-\infty</td>
<td>+\infty</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-Vertical Asymptote:
\[
y = \frac{1}{(x + 2)(x - 3)}
\]

As \(x \to \pm \infty \), \(y \to 0 \).
This means that \(y = 0 \) is a non-vertical asymptote.
\[y = \frac{1}{(x+2)(x-3)} \]
Worked Example 2

Sketch the graph of $y = \frac{x - 3}{x^2 + x - 2}$.

[You need not find the coordinates of any stationary points.]

Solution

y-axis:

When $x = 0$, $y = \frac{-3}{-2} = \frac{3}{2}$.

The curve cuts the y-axis at $(0, \frac{3}{2})$.

x-axis:

When $y = 0$, $\frac{x - 3}{x^2 + x - 2} = 0 \Rightarrow x - 3 = 0 \Rightarrow x = 3$

The curve cuts the x-axis at $(3, 0)$.

Vertical Asymptotes:

$x^2 + x - 2 = 0 \Rightarrow (x + 2)(x - 1) = 0 \Rightarrow x = -2$ or $x = 1$

<table>
<thead>
<tr>
<th>x</th>
<th>-2.1</th>
<th>-2</th>
<th>-1.9</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$-\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$-\infty$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-Vertical Asymptote:

$y = \frac{x - 3}{x^2 + x - 2}$

As $x \to \pm\infty$, $y \to 0$ (since the degree of the denominator is higher than the degree of the numerator).

This means that $y = 0$ is a non-vertical asymptote.
YOU CAN NOW ATTEMPT THE WORKSHEET "SKETCHING RATIONAL FUNCTIONS 1".

\[y = \frac{x - 3}{x^2 + x - 2} \]
Before investigating the non-vertical asymptote of an improper rational function, algebraic long division must be used.

Worked Example 3

Sketch the graph of \(y = \frac{x + 4}{x + 2} \).
[You need not find the coordinates of any stationary points.]

Solution

y-axis:

When \(x = 0 \), \(y = \frac{4}{2} = 2 \).
The curve cuts the y-axis at (0, 2).

x-axis:

When \(y = 0 \), \(\frac{x + 4}{x + 2} = 0 \) \(\Rightarrow \) \(x + 4 = 0 \) \(\Rightarrow \) \(x = -4 \)

The curve cuts the x-axis at (−4, 0).

Vertical Asymptotes: \(x + 2 = 0 \) \(\Rightarrow \) \(x = -2 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2.1</th>
<th>-2</th>
<th>-1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>−∞</td>
<td>+∞</td>
<td></td>
</tr>
</tbody>
</table>

Non-Vertical Asymptote:

\[
y = \frac{x + 4}{x + 2}
\]

\[
\begin{align*}
1 \\
\frac{x + 2}{x + 4} \\
\frac{x + 2}{x + 2} \\
2
\end{align*}
\]

\[
y = 1 + \frac{2}{x + 2}
\]

As \(x \rightarrow \pm\infty \), \(y \rightarrow 1 \).
This means that \(y = 1 \) is a non-vertical asymptote.
\[y = \frac{x + 4}{x + 2} \]
Worked Example 4

Sketch the graph of \(y = \frac{x^2 - 4}{x - 1} \).
[You need not find the coordinates of any stationary points.]

Solution

\(y \)-axis: When \(x = 0 \), \(y = \frac{-4}{-1} = 4 \).
The curve cuts the \(y \)-axis at \((0, 4) \).

\(x \)-axis: When \(y = 0 \), \(\frac{x^2 - 4}{x - 1} = 0 \) \(\Rightarrow \) \(x^2 - 4 = 0 \)
\(\Rightarrow \) \(x^2 = 4 \)
\(\Rightarrow \) \(x = \pm 2 \)
The curve cuts the \(x \)-axis at \((-2, 0) \) and \((2, 0) \).

Vertical Asymptotes: \(x - 1 = 0 \) \(\Rightarrow \) \(x = 1 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>+∞</td>
<td>−∞</td>
<td></td>
</tr>
</tbody>
</table>

Non-Vertical Asymptote:

\[
y = \frac{x^2 - 4}{x - 1}
\]

\[
x - 1 \overline{\underline{x^2 + 0x - 4}}
\begin{array}{c}
x - 4 \\
\underline{x - 1}
\end{array}
\]

\[
y = x + 1 - \frac{3}{x - 1}
\]

As \(x \rightarrow \pm \infty \), \(y \rightarrow x + 1 \).
This means that \(y = x + 1 \) is a non-vertical asymptote.
YOU CAN NOW ATTEMPT THE WORKSHEET "SKETCHING RATIONAL FUNCTIONS 2".
Worked Example 5

A function \(f \) is defined by \(f(x) = \frac{2x^2 + x - 1}{x - 1} \).

(a) Find the coordinates of all the points where the graph of \(y = f(x) \) crosses the coordinate axes.

(b) Find the equation of each asymptote.

(c) Find the coordinates of each of the stationary points on the graph of \(y = f(x) \) and determine their nature.

(d) Sketch the graph of \(y = f(x) \).

(e) State the range of values of the constant \(k \) such that the equation \(f(x) = k \) has no real solutions for \(x \).

Solution

(a) \(y \)-axis: \(\text{When } x = 0, \ y = \frac{-1}{-1} = 1. \)

The curve crosses the \(y \)-axis at \((0, 1) \).

\(x \)-axis: \(\text{When } y = 0, \ \frac{2x^2 + x - 1}{x - 1} = 0 \)

\[\Rightarrow \quad 2x^2 + x - 1 = 0 \]

\[\Rightarrow \quad (2x - 1)(x + 1) = 0 \]

\[\Rightarrow \quad x = \frac{1}{2} \text{ or } x = -1 \]

The curve crosses the \(x \)-axis at \((-1, 0) \) and \(\left(\frac{1}{2}, 0 \right) \).

(b) \(\text{Vertical Asymptotes: } x - 1 = 0 \quad \Rightarrow \quad x = 1 \)

\[
\begin{array}{c|ccc}
 x & 0.9 & 1 & 1.1 \\
 y & +\infty & +\infty \\
\end{array}
\]
Non-Vertical Asymptote:

\[
y = \frac{2x^2 + x - 1}{x - 1}
\]

\[
\begin{array}{c}
2x + 3 \\
-1 \\
\hline
2x^2 + x - 1 \\
-2x^2 - 2x \\
\hline
3x - 1 \\
3x - 3 \\
\hline
2
\end{array}
\]

\[
y = 2x + 3 + \frac{2}{x - 1}
\]

As \(x \to \pm \infty \), \(y \to 2x + 3 \).
This means that \(y = 2x + 3 \) is a non-vertical asymptote.

(c) There are two methods of finding the coordinates and nature of the stationary points.

Method 1:

The form \(y = \frac{2x^2 + x - 1}{x - 1} \) can be differentiated using the quotient rule.

\[
\frac{dy}{dx} = \frac{(x - 1)(4x + 1) - (2x^2 + x - 1) \cdot 1}{(x - 1)^2}
\]

\[
= \frac{4x^2 - 3x - 1 - 2x^2 - x + 1}{(x - 1)^2}
\]

\[
= \frac{2x^2 - 4x}{(x - 1)^2}
\]

\[
= \frac{2x(x - 2)}{(x - 1)^2}
\]

At a stationary point, \(\frac{dy}{dx} = 0 \) \(\Rightarrow \)

\[
\frac{2x(x - 2)}{(x - 1)^2} = 0
\]

\(\Rightarrow \)

\[
2x(x - 2) = 0
\]

\(\Rightarrow \)

\[
x = 0 \text{ or } x = 2
\]

When \(x = 0 \), \(y = 1 \to (0, 1) \).
When \(x = 2 \), \(y = 9 \to (2, 9) \).
The nature of each stationary point can be determined using a nature table.

<table>
<thead>
<tr>
<th>x</th>
<th>-0.1</th>
<th>0</th>
<th>0.1</th>
<th>1.9</th>
<th>2</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{dy}{dx}$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
</tbody>
</table>

$(0, 1)$ is a maximum turning point and $(2, 9)$ is a minimum turning point.

Method 2:

The form $y = 2x + 3 + \frac{2}{x - 1}$ can be differentiated using the chain rule.

$$y = 2x + 3 + 2(x - 1)^{-1} \quad \Rightarrow \quad \frac{dy}{dx} = 2 - 2(x - 1)^{-2} \cdot 1$$

$$= 2 - \frac{2}{(x - 1)^2}$$

At a stationary point, $\frac{dy}{dx} = 0 \quad \Rightarrow \quad 2 - \frac{2}{(x - 1)^2} = 0 \quad [\times (x - 1)^2]$

$$\Rightarrow \quad 2(x - 1)^2 - 2 = 0$$

$$\Rightarrow \quad 2(x - 1)^2 = 2$$

$$\Rightarrow \quad (x - 1)^2 = 1$$

$$\Rightarrow \quad x = 2 \text{ or } x = 0$$

When $x = 0$, $y = 1 \rightarrow (0, 1)$.
When $x = 2$, $y = 9 \rightarrow (2, 9)$.

The nature of each stationary point can be found using the second derivative.

$$\frac{dy}{dx} = 2 - 2(x - 1)^{-2} \quad \Rightarrow \quad \frac{d^2y}{dx^2} = 4(x - 1)^{-3} \cdot 1 = \frac{4}{(x - 1)^3}$$

When $x = 0$:
$$\frac{d^2y}{dx^2} = \frac{4}{(-1)^3} = -4 < 0 \quad \Rightarrow \quad (0, 1) \text{ is a maximum t.p.}$$

When $x = 2$:
$$\frac{d^2y}{dx^2} = \frac{4}{1^3} = 4 > 0 \quad \Rightarrow \quad (2, 9) \text{ is a minimum t.p.}$$
(e) The graph shows that the equation $f(x) = k$ has no real solutions when k lies in the interval $1 < k < 9$.

YOU CAN NOW ATTEMPT THE WORKSHEET "SKETCHING RATIONAL FUNCTIONS 3".
THE GRAPH OF $y = |f(x)|$

Recall that $|x|$ denotes the magnitude of a real number x and is the positive numerical value of x, regardless of whether x itself is positive or negative.

$|2| = 2$, $|-3| = 3$, and so on.

Clearly, $|x| = x$ if $x \geq 0$ and $|x| = -x$ if $x < 0$.

Given a function $f(x)$, $|f(x)|$ is always non-negative and therefore the graph of $y = |f(x)|$ will be lie entirely above or on the x-axis.

The graph of $y = |f(x)|$ is easily obtained from the graph of $y = f(x)$ as follows:

(1) The parts of the graph of $y = f(x)$ which lie above or on the x-axis will remain unchanged on the graph of $y = |f(x)|$.

(2) The parts of the graph of $y = f(x)$ which lie below the x-axis will must be reflected in the x-axis to lie above the x-axis on the graph of $y = |f(x)|$.

The graphs below illustrate how the graph of $y = |f(x)|$ is obtained from the graph of $y = f(x)$ for a particular function $f(x)$.
ODD AND EVEN FUNCTIONS

Given a function \(f \), if \(f(-x) = f(x) \) for all values of \(x \), \(f \) is said to be an even function. The graph of an even function will always be symmetrical about the \(y \)-axis, since \(f(-1) = f(1) \), \(f(-2) = f(2) \), etc.

The graph of an even function is shown below.

\[
\begin{align*}
&\text{y} \\
\hline
&\text{x} \\
&y = f(x)
\end{align*}
\]

If \(f(-x) = -f(x) \) for all values of \(x \), \(f \) is said to be an odd function. The graph of an odd function will always have half-turn symmetry about the origin, since \(f(-1) = -f(1) \), \(f(-2) = -f(2) \), etc.

The graph of an odd function is shown below.

\[
\begin{align*}
&\text{y} \\
\hline
&\text{x} \\
&y = f(x)
\end{align*}
\]

To determine whether a given function \(f \) is odd, even or neither, find an expression for \(f(-x) \) and compare this expression to \(f(x) \). If \(f(-x) = f(x) \), then the function \(f \) is even; if \(f(-x) = -f(x) \), then the function \(f \) is odd; otherwise, the function \(f \) is neither odd nor even.
It is useful to know the following trigonometric identities for negative angles:

\[
\begin{align*}
\sin(-x) &= -\sin x \\
\cos(-x) &= \cos x \\
\tan(-x) &= -\tan x
\end{align*}
\]

You can easily verify using a calculator that, for example, \(\sin(-30^\circ) = -\sin30^\circ\), whereas \(\cos(-30^\circ) = \cos30^\circ\).

Worked Example 1

Prove that the function \(f(x) = x^4 - 2x^2 + 3\) is an even function.

Solution

\[
\begin{align*}
f(-x) &= (-x)^4 - 2(-x)^2 + 3 \\
&= x^4 - 2x^2 + 3 \quad [\text{since } (-x)^4 = x^4 \text{ and } (-x)^2 = x^2] \\
&= f(x)
\end{align*}
\]

Hence \(f(-x) = f(x)\) for all values of \(x\) and \(f\) is an even function.

Worked Example 2

Prove that the function \(f(x) = x^3 - 2x\) is an odd function.

Solution

\[
\begin{align*}
f(-x) &= (-x)^3 - 2(-x) \\
&= -x^3 + 2x \quad [\text{since } (-x)^3 = -x^3] \\
&= -(x^3 - 2x) \\
&= -f(x)
\end{align*}
\]

Hence \(f(-x) = -f(x)\) for all values of \(x\) and \(f\) is an odd function.
Worked Example 3

Investigate whether the function $f(x) = x^3 \sin x$ is odd, even or neither.

Solution

$$f(-x) = (-x)^3 \sin(-x)$$
$$= -x^3 \cdot (-\sin x) \quad \text{[since } (-x)^3 = -x^3 \text{ and } \sin(-x) = -\sin x \text{]}$$
$$= x^3 \sin x$$
$$= f(x)$$

Hence $f(-x) = f(x)$ for all values of x and f is an even function.